1. \[\frac{123,4}{12,34} - \frac{0,1234}{1,234} \] işleminin sonucu kaçtır?

A) 0 B) 0,2 C) 9,9 D) 10,1 E) 11,1

Çözüm 1

\[\frac{123,4}{12,34} - \frac{0,1234}{1,234} = \frac{12340}{1234} - \frac{1234}{12340} = 10 - \frac{1}{10} = \frac{99}{10} = 9,9 \]

2. \[\left[\left(\frac{1}{2} - \frac{1}{3} \right) \frac{1}{4} \right] : \frac{5}{6} \] işleminin sonucu kaçtır?

A) \(\frac{1}{20} \) B) \(\frac{1}{12} \) C) \(\frac{5}{12} \) D) \(\frac{1}{5} \) E) \(\frac{1}{4} \)

Çözüm 2

\[\left[\left(\frac{1}{2} - \frac{1}{3} \right) \frac{1}{4} \right] : \frac{5}{6} = \left[\left(\frac{3}{6} - \frac{2}{6} \right) \frac{1}{4} \right] : \frac{5}{6} = \left[\frac{1}{6} \frac{1}{4} \right] : \frac{5}{6} = \frac{1}{24} \cdot \frac{6}{5} = \frac{1}{20} \]

3. \(\left(\frac{1}{2} \right)^{-1} : \left(\frac{1}{2} \right)^2 \) işleminin sonucu kaçtır?

A) \(\frac{1}{8} \) B) \(\frac{1}{4} \) C) 1 D) 4 E) 8

Çözüm 3

\[\left(\frac{1}{2} \right)^{-1} : \left(\frac{1}{2} \right)^2 = \left(\frac{2}{1} \right) : \left(\frac{1}{4} \right) = \left(\frac{8}{1} \right) \cdot \frac{1}{8} = (2^3)^{\frac{1}{2}} = \sqrt{8^2} = 8 \]
4. \(\frac{2}{7} < x < \frac{3}{7} \) olduğuna göre, x aşağıdaki kilerden hangisi olabilir?

A) \(\frac{1}{14} \) B) \(\frac{5}{14} \) C) \(\frac{5}{6} \) D) \(\frac{1}{4} \) E) \(\frac{1}{2} \)

Çözüm 4

\(\frac{2}{7} < x < \frac{3}{7} \) eşitsizliğinin her iki tarafı 2 ile genişletilirse, \(\frac{4}{14} < x < \frac{6}{14} \) \(\Rightarrow \) \(x = \frac{5}{14} \)

5. \(a, b, c, d \) pozitif tamsayılar ve

\[
\frac{a}{b} : \frac{7}{10} = c
\]
\[
\frac{a}{b} : \frac{14}{45} = d
\]

olduğuına göre, \(c + d \) nin alabileceği en küçük değer kaçtır?

A) 8 B) 10 C) 12 D) 13 E) 15

Çözüm 5

\[
\frac{a}{b} = \frac{7c}{10}
\]
\[
\frac{a}{b} = \frac{14d}{45}
\]

\[\frac{7c}{10} = \frac{14d}{45} \quad \Rightarrow \quad 4d = 9c \quad \Rightarrow \quad (c + d) \) nin en küçük olması için,

\(c = 4 \), \(d = 9 \) olacağınından, \(c + d = 9 + 4 = 13 \) elde edilir.

6. \(A = \{1, 2, 3, 4, 5, 6, 7, 8\} \)

kümesinin 4 elemanlı alt kümelerinin kaç tanesinde 2 bulunur ama 4 bulunmaz?

A) 10 B) 15 C) 20 D) 50 E) 70
Çözüm 6

A = \{1, 2, 3, 4, 5, 6, 7, 8\} kümesinden \{2\} ve \{4\} elemanları dışında,

\({1, 3, 5, 6, 7, 8}\) kümesinin 3 elemanlı alt kümeleri:

\[\binom{6}{3} = \frac{6!}{(6-3)!.3!} = \frac{6.5.4}{3.2.1} = 20 \]

Bu küme elemanlarına \{2\} de eklenirse, sonuç istenilen şekilde elde edilir.

Örneğin, \{1, 3, 5\} + \{2\} = \{1, 2, 3, 5\}

7. a, b, c birer tamsayı ve \(a.b = 2c - 1\) olduğuna göre, aşağıdakilerden hangisi doğrudur?

A) a ve b tek sayılardır.
B) a ve b çift sayılaradır.
C) a çift, b tek sayıdır.
D) a – b tek sayıdır.
E) a + b tek sayıdır.

Çözüm 7

2c – 1 sayısı her zaman için tek sayıdır.
O halde, a.b sayısı da tek sayıdır.

a.b çarpımının tek sayı olması için, çarpımdaki her terim tek sayı olmalıdır.
Sonuç olarak, a ve b tek sayılardır.

8. \(6^6 + 6^5\) sayısının 5 ile bölümünden kalan kaçtır?

A) 0 B) 1 C) 2 D) 3 E) 4

Çözüm 8

\(6^6 \equiv 1\) (mod 5)

\(6^5 \equiv 1\) (mod 5) \(\Rightarrow\) \(6^6 + 6^5 \equiv 1 + 1 \equiv 2\) (mod 5)
9. \(1 < a \leq 10 \) olmak üzere,
\[12 - a \equiv 0 \pmod{a} \] denklemini sağlayan kaç tane \(a \) tamsayısı vardır?
A) 5 B) 4 C) 3 D) 2 E) 1

Çözüm 9

I. Yol

\[12 - a \equiv 0 \pmod{a} \implies \frac{12 - a}{a} \in \mathbb{Z} \] olmalı \(\Rightarrow \frac{12}{a} - 1 \in \mathbb{Z} \) olması için, \(a = \{2, 3, 4, 6\} \)

II. Yol

\[12 - a = k.a + 0 \quad (k \in \mathbb{Z}) \implies 12 = a.(k + 1) \implies 12 = a.t \quad (t \in \mathbb{Z}) \]

\[t = \frac{12}{a} \implies a = 12 \] nin tam bölenleri \(= \{1, 2, 3, 4, 6, 12\} \)

\(1 < a \leq 10 \) olduğuna göre, \(a = \{2, 3, 4, 6\} \) olur.

10. \(a = 9^x + 5 \) ve \(b = 3 – 3^x \) olduğuna göre, aşağıdakilerden hangisi \(a \) ya eşittir?
A) \(3 - b \) B) \(b^2 - 3b \) C) \(b^2 + 4 \) D) \(b^2 - 6b + 7 \) E) \(b^2 - 6b + 14 \)

Çözüm 10

\[b = 3 - 3^x \implies 3^x = 3 - b \]
\[a = 9^x + 5 = 3^{2x} + 5 = (3^x)^2 + 5 \]
\[a = (3 - b)^2 + 5 \implies a = 9 - 6b + b^2 + 5 \implies a = b^2 - 6b + 14 \]
11. $3a - 3b + 4c = 7$ ve $2a - 6b + 8c = 2$ olduguna göre, a kaçtır?
A) 3 B) 4 C) 5 D) 6 E) 8

 Çözüm 11

\[
\begin{array}{c|c}
(-2) & 3a - 3b + 4c = 7 \\
1 & 2a - 6b + 8c = 2 \\
\end{array}
\]

\[
-6a + 6b - 8c = -14 \\
\]

\[
2a - 6b + 8c = 2 \\
\]

\[
-4a = -12 \quad \Rightarrow \quad a = 3 \text{ bulunur.}
\]

12. Her x gerçel sayısı için,

\[
x^2 + ax - 5 = (x + 1)(bx + c)
\]

olduğuna göre, $a + b + c$ toplamı kaçtır?
A) –9 B) –8 C) 0 D) 8 E) 9

Çözüm 12

\[
x^2 + ax - 5 = (x + 1)(bx + c)
\]

\[
= bx^2 + (b + c)x + c \quad \Rightarrow \quad b = 1 , c = -5 , a = -4
\]

\[
a + b + c = (-4) + 1 + (-5) = -8
\]
13. $x > 0$ olmak üzere, \(\frac{x^2 - 4}{x^2} \left(\frac{x}{3x + 2} \right) = \frac{x^2 + 2}{x} \) olduğuna göre, x kaçtır?

A) 1 B) 2 C) 3 D) 4 E) 8

Çözüm 13

\[
\left(\frac{x^2 - 4}{x^2} \right) \left(\frac{x}{3x + 2} \right) = \frac{x^2 + 2}{x}
\]

\[
(x - \frac{2}{x})(x + \frac{2}{x}) \cdot \left(\frac{x}{3x + 2} \right) = \left(\frac{x}{x} + \frac{2}{x} \right)
\]

\[
\frac{x^2 - 2}{x} = \frac{3x + 2}{x}
\]

\[
x^2 - 2 = 3x + 2 \Rightarrow x^2 - 3x - 4 = 0 \Rightarrow (x - 4)(x + 1) = 0 \Rightarrow x = 4 \quad (x > 0)
\]

14. \(\frac{a^2 - 2bc - 2ac - b^2}{a + b} \) ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir?

A) $a - b - 2c$ B) $a - b + 2c$ C) $a + b + 2c$ D) $a - b - c$ E) $a + b + c$

Çözüm 14

\[
\frac{a^2 - 2bc - 2ac - b^2}{a + b} = \frac{(a - b)(a + b) - 2c(a + b)}{a + b} = \frac{(a + b)(a - b - 2c)}{a + b} = a - b - 2c
\]

15. $y < x < 0$ olmak üzere,

\[
\sqrt{x^2 + 4xy + 4y^2} + |y - x| + \frac{y}{\sqrt{y^2}} = 8 \quad \text{olduğuna göre, } y \text{ kaçtır?}
\]

A) -8 B) -7 C) -6 D) -5 E) -3
Çözüm 15

\[\sqrt{x^2 + 4xy + 4y^2} = \sqrt{(x + 2y)^2} = |x + 2y| \text{ ve} \]

\[\sqrt{y^2} = |y| \text{ olduğuna göre,} \]

\[\sqrt{x^2 + 4xy + 4y^2} + |y - x| + \frac{y}{\sqrt{y^2}} = 8 \]

\[|x + 2y| + |y - x| + \frac{y}{|y|} = 8 \quad (y < x < 0 \text{ olduğuna göre,}) \]

\(x + 2y < 0 \)

\(y - x < 0 \text{ ve } y < 0 \text{ olduğuna göre,} \)

\[-(x + 2y) - (y - x) + \frac{y}{-y} = 8 \]

\[-x - 2y - y + x - 1 = 8 \quad \Rightarrow \quad -3y = 9 \quad \Rightarrow \quad y = -3 \text{ bulunur.} \]

16. \(|x - 2| \cdot |x + 5| = x - 2 \) eşitliğini sağlayan x değerinin kümesi aşağıdaki kilerden hangisidir?

A) \{-4, -2\} B) \{-4, 2\} C) \{-2\} D) \{2\} E) \{2, 4\}

Çözüm 16

\(|x - 2| \geq 0 \text{ ve } |x + 5| \geq 0 \) olanakından, \(|x - 2| \cdot |x + 5| = x - 2 \geq 0 \) olmak zorundadır.

\(x - 2 \geq 0 \quad \Rightarrow \quad x \geq 2 \text{ olur.} \)

Dolayısıyla seçeneklerimizde \{2\} olmalıdır.

Diğer verilen sayıları eşitsizlikte yerine yazarsak, \{4\} bu eşitsizliği sağlamaz.

O halde sonuç, \{2\} olur.
17. Z tamsayılar kümesi üzerinde * işlemi,
 \[a * b = a + b + 3 \]
biçiminde tanımlanmıştır. Bu işleme göre, 2 nin tersi kaçtır?
A) – 9 B) – 8 C) – 7 D) 5 E) 6

Çözüm 17

Birim eleman = e olsun.

\[a * e = a \quad \Rightarrow \quad a * e = a = a + e + 3 \quad \Rightarrow \quad e = -3 \] bulunur.

2-1 : 2 -1 nin tersi olsun.

\[2 * 2-1 = e \] olduğundan,

\[2 * 2-1 = -3 \quad , \quad * \text{ işleminde yerine yazarsak}, \]

\[2 * 2-1 = 2 + 2-1 + 3 = -3 \quad \Rightarrow \quad 2-1 = -8 \]

18. 400 üyeli bir parlamento 3 partiye mensup milletvekillerinden oluşmuştur ve her partinin milletvekili sayısı birbirinden farklıdır.
Bu parlamentoda güvenoyu için en az 201 oy gerekmektedir.
Güvenoyu için herhangi iki partinin milletvekili sayıları toplamı yeterli olduğuna göre, parlamentodaki en küçük partinin milletvekili sayısı en az kaçtır?
A) 1 B) 2 C) 3 D) 4 E) 5

Çözüm 18

Partilerin milletvekili sayısı a , b , c olsun.

\[a \neq b \neq c \quad , \quad a + b + c = 400 \quad \text{ve} \quad a \text{ en az olsun.} \]

\[a + b \geq 201 \quad \text{ve} \quad a + c \geq 201 \] şartlarını sağlaması için,

\[a + b + a + c \geq 201 + 201 \quad \Rightarrow \quad a + (a + b + c) \geq 402 \quad \Rightarrow \quad a + 400 \geq 402 \quad \Rightarrow \quad a \geq 2 \]

\[a \neq b \neq c \text{ olduğundan,} \]

\[b = 199 \quad \text{ve} \quad c = 198 \] alınırsa, \[a + b + c = 400 \quad \Rightarrow \quad a = 3 \] bulunur.
19.

Yukarıdaki toplama işleminde A, B, C, D sıfırdan ve birbirinden farklı birer çift rakam, AB ve CD de iki basamaklı sayıları göstermektedir.
Buna göre, toplama işleminin sonucu aşağıdakiderden hangisi olmaz?

A) 146 B) 128 C) 110 D) 92 E) 72

Çözüm 19

A ≠ B ≠ C ≠ D ≠ 0

{2, 4, 6, 8} kümesinin elemanlarıyla yazılabilecek en küçük sayılar 26 ve 48 dir.

Bunların toplamı = 26 + 48 = 74 ⇒ O halde 72 olamaz.

20. Uzunlukları sırasıyla 1 km ve 900 m olan iki tünelden birincinin bitiş noktasıyla ikincinin başlangıç noktası arasındaki uzaklık 14 km dir.

Uzunluğu 100 m, saatteki hızı 80 km olan bir tren birinci tünele girdiği andan kaç dakika sonra ikinci tünelinden tamamen çıkar?

A) 12 B) 15 C) 16 D) 18 E) 20

Çözüm 20

1 inci tünele girişinden, 2 inci tünelden tamamen çıktına kadaracağı yol =
(1 inci tünel uzunluğu + tünelArası uzaklık + 2 inci tünel uzunluğu + tren uzunluğu)

= 1 km + 14 km + (1 km + 900 m) + 100 m

= 1000 + 14000 + 1900 + 100 = 1600 m = 16 km

x = v.t ⇒ 16 = 80.t ⇒ t = \(\frac{16}{80} = \frac{1}{5} \) saat ⇒ t = \(\frac{60}{5} = 12 \) dakika
21. Şekildeki satır ve sütunların kesişiminde verilen sayılar, bulundukları satır ve sütunun belirttiği iki kent arasındaki yolu km cinsinden uzunluğu göstermektedir.
Örneğin, A ile D kentleri arasındaki yol 130 km dir.
A , B , C , D, E kentleri aynı yol üzerinde ve yazılan sırada, x + y kaçtır?

A) 90 B) 100 C) 120 D) 130 E) 140

Çözüm 21

A ile E arası uzunluk = 170
A ile D arası uzunluk = 130

\[
\begin{align*}
D \text{ ile E arası uzunluk} &= y = 170 - 130 = 40 \\
E \text{ ile A arası uzunluk} &= 170 \\
E \text{ ile B arası uzunluk} &= 90 \\
A \text{ ile B arası uzunluk} &= x = 170 - 90 = 80
\end{align*}
\]

x + y = 80 + 40 = 120

22. Belirli bir yükseklikten bırakılan bir top, yere vuruşundan sonra bir önceki düşüş yüksekliğinin \(\frac{2}{9} \) u kadar yükselmektedir.

Top yere üçüncü vuruşundan sonra 8 cm yükseldiğine göre, başlangıçta kaç cm den bırakılmıştır?

A) 621 B) 628 C) 720 D) 729 E) 738
23. Ahmet ile Hasan’ın bugün Yaşları toplamı 54 tür.
 Ahmet, Hasan’ın bugün Yaşındağken Hasan 18 yaşında olduğunu göre,
 Ahmet bugün kaç yaşındadır?

 A) 28 B) 29 C) 30 D) 32 E) 34

Çözüm 23

Ahmet’in yaş = x olsun.

Hasan’in yaş = 54 – x olur.

Ahmet, Hasan’ın bugün Yaşında ise = 54 – x , Hasan ise = 18

Yaşları arasındaki fark eşit olacağını, (54 – x) – x = 18 – (54 – x) \(\Rightarrow \) x = 30 bulunur.

24. Bir kültürdeki bakteri sayısı her 1 saatlik sure sonucunda iki katına çıkmaktadır.
 Başlangıçta 128 tane bakterinin bulunduğu bu kültürde 12 saatin sonunda kaç bakteri olur?

 A) 2^{20} B) 2^{19} C) 2^{18} D) 2^{15} E) 2^{12}
Çözüm 24
Başlangıçtaki bakteri sayısı = 128 = 2^7
1. saat sonundaki bakteri sayısı = 2.2^7
2. saat sonundaki bakteri sayısı = 2.2.2^7 = 2^2.2^7
3. saat sonundaki bakteri sayısı = 2.2^2.2^7 = 2^3.2^7

..
...

12. saat sonundaki bakteri sayısı = 2.2.2.2.2.2 = 2^11.2^7 = 2^19

25. a tanesi b TL den satın kalemlerden c tane satın alınarak d TL ödeniyor. Buna göre, aşağıdakilerden hangisi her zaman doğrudur?
A) ab = cd B) ac = bd C) ad = bc D) a^2b = cd^2 E) a^2d = bc^2

Çözüm 25

a tanesi b TL ise bir tanesi = \(\frac{b}{a}\) olur.

c tanesi de, \(\frac{b}{a}\) TL bulunur.

d = c.\(\frac{b}{a}\) \Rightarrow a.d = b.c sonucu ortaya çıkar.

26. A ve B birer rakam, AB ve BA da iki basamaklı sayılardır. Buna göre, AB – BA farkı aşağıdaki kilerden hangisi olamaz?
A) 9 B) 18 C) 36 D) 54 E) 61
Çözüm 26

\[AB = 10A + B \]
\[BA = 10B + A \]

\[AB - BA = 9A - 9B = 9(A - B) \] bulunur.

Sonuç 9'un katı olmalıdır. Seçeneklerden 61, 9'un katı değildir.

27. 62 kalem, 5 lik, 6 lik ve 8 lik gruplara ayrılarak paketlenmiştir. Toplam paket sayısı 11 olduğuna göre, içinde 5 kalem olan paket sayısı en çok kaçtır?

A) 6 B) 7 C) 8 D) 9 E) 10

Çözüm 27

\[5 \text{ li paket sayısı} = x \]
\[6 \text{ li paket sayısı} = y \]
\[8 \text{ li paket sayısı} = z \] olsun.

\[x + y + z = 11 \] (1)
\[5x + 6y + 8z = 62 \] (2)

\[x \] in en çok olması için, \(y \) ve \(z \) en az olmalıdır.

(1) denkleminin \(-5\) ile çarpıp, (2) denklemiyle toplarsak, \(y + 3z = 7 \) olur ve

\[y = 1, z = 2 \] için, \(x + y + z = x + 1 + 2 = x + 3 = 11 \implies x = 8 \) bulunur.

28. a TL ye alınan bir mal alış fiyatı üzerinden % 20 kârla b TL ye, etiket fiyatı b TL olan bir mal da % 20 indirimle c TL ye sattıyor. Buna göre, a, b, c arasındaki ilişki aşağıdakilerden hangisidir?

A) \(c < a < b \) B) \(c < b < a \) B) \(a < b < c \) D) \(a = b < c \) E) \(a = c < b \)
Çözüm 28

alış fiyatı = a

\[b = a + a \times \frac{20}{100} = a + \frac{20a}{100} = \frac{120a}{100} \]

\[c = b - b \times \frac{20}{100} = b - \frac{20b}{100} = \frac{80b}{100} = \frac{80 \times \frac{120a}{100}}{100} = \frac{96a}{100} \]

\[\frac{96a}{100} < \frac{100a}{100} < \frac{120a}{100} \Rightarrow c < a < b \] olduğu görülür.

29. Bir sınıftaki erkeklerin sayısının kızların sayısına oranı \(\frac{3}{7} \) dir.

Erkeklerin % 20 si futbol oynadığına göre, futbol oynamayan erkeklerin sayısı tüm sınıfın % kaçıdır?

A) 16 B) 18 C) 20 D) 22 E) 24

Çözüm 29

Erkeklerin sayısı = x

Kızların sayısı = y olsun.

\[\frac{x}{y} = \frac{3}{7} \Rightarrow y = \frac{7x}{3} \]

Futbol oynayan erkek sayısı = x. % 20 = \(\frac{20x}{100} = \frac{x}{5} \)

Futbol oynamayan erkek sayısı = \(x - \frac{x}{5} = \frac{4x}{5} \)

İstendiği oranı \(\frac{\frac{4x}{5}}{\frac{5x}{3} + \frac{4x}{5}} = \frac{24}{100} = \% 24 \)
30.

Yukarıdaki grafikte sabit hızla hareket eden K ve L araçlarının yolda geçen süreye göre depolarında kalan benzin miktarını göstermektedir.
Hareketlerinden kaç saat sonra, bu araçların depolarında kalan benzin miktarı eşit olur?

A) 2 B) 3 C) 4 D) 5 E) 6

Çözüm 30

K aracının deposunda 60 lt.benzin var. Bir saatte 10 lt.harcıyor.
L aracının deposunda 45 lt. benzin var. Bir saatte 5 lt.harcıyor.
Araçlarda kalan benzin miktarları x saat sonra eşit olsun.

x saat sonra K aracının deposunda (60 – x.10) lt. benzin kalır.
x saat sonra L aracının deposunda (45 – x.5) lt. benzin kalır.

Kalan benzinler eşitlenirse, 60 – x.10 = 45 – x.5 ⇒ 5.x = 15 ⇒ x = 3
yani 3 saat sonra depolarındaki benzin eşit olur.
31.

Yukarıdaki verilere göre, x kaç cm dir?
A) 14 B) 18 C) 22 D) 24 E) 26

Çözüm 31

$|AL| = |LH| = |HK| = |KB| = a$ olsun.

BEK ~ BDL $\Rightarrow \frac{BK}{BL} = \frac{KE}{LD} = \frac{BE}{BD} \Rightarrow \frac{a}{3a} = \frac{2}{LD} \Rightarrow |LD| = 6$ cm

ALD ~ ABC $\Rightarrow \frac{AL}{AB} = \frac{LD}{BC} = \frac{AD}{AC} \Rightarrow \frac{a}{4a} = \frac{6}{|BC|} \Rightarrow |BC| = 24$ cm

32.

ABCD eşkenar dörtgen

$m(BFE) = 90^\circ$

$|AB| = |BE| = 8$

Şekildeki ABCD eşkenar dörtgenin alanı kaç cm2 dir?
A) $16\sqrt{2}$ B) $24\sqrt{2}$ C) $30\sqrt{2}$ D) $24\sqrt{3}$ E) $32\sqrt{3}$
Çözüm 32

ABCD eşkenar dörtgen ise, $|AB| = |BC| = |CD| = |DA| = 8$ cm

$|AB| = |BE| = 8$ cm

$BC // AD$

$EBF \sim EAD \Rightarrow |FB| = 4$

EBF dik üçgeninde, pisagordan, $|FE| = 4\sqrt{3}$

$EBF \sim EAD \Rightarrow \frac{8}{16} = \frac{4\sqrt{3}}{|DE|} \Rightarrow |DE| = 8\sqrt{3}$

$|DE| = |EF| + |FE| \Rightarrow |FD| = 4\sqrt{3}$

ABCD eşkenar dörtgenin alanı $= \text{taban} \times \text{yükseklik} = 8 \times 4\sqrt{3} = 32\sqrt{3}$

33.

OABC bir dikdörtgen

$OD \perp CA$

$|OD| = x$

OABC bir dikdörtgeni şekildeki gibi 8 birim kareye bölünmüştür.

Bu göre, x kaç birimdir?

A) $\frac{2}{5}$ B) $\frac{4}{5}$ C) $\frac{2\sqrt{5}}{5}$ D) $\frac{4\sqrt{5}}{5}$ E) $\frac{8\sqrt{5}}{5}$
Çözüm 33

AOC üçgeninde pisagor uygulanrsa,

\[|CA|^2 = |OA|^2 + |OC|^2 \]

\[|CA| = 2\sqrt{5} \]

Alan (OAC) = \[\frac{CO \cdot OA}{2} = \frac{OD \cdot CA}{2} \] \[\Rightarrow \quad |CO| \cdot |OA| = |OD| \cdot |CA| \]

\[2.4 = x \cdot 2\sqrt{5} \quad \Rightarrow \quad x = \frac{4\sqrt{5}}{5} \]

34.

Kenar uzunlukları \[|AD| = 16\text{ cm}, \quad |AB| = 20\text{ cm} \] olan dikdörtgen biçimindeki bir kartonun [BC] kenarı üzerinde uygun bir K noktası bulunup karton AK boyunca katlanarak B köşesi [DC] kenarı üzerindeki B' noktasına getiriliyor.

Kartonun üzerine katlanan kısmı olan AKB' üçgeninin alanı kaç cm\(^2\) dir?

A) 100 B) 80 C) \(50\sqrt{3} \) D) \(\frac{80\sqrt{3}}{4} \) E)\(100\sqrt{2} \)
Çözüm 34

\[|AB| = |AB'| = 20 \]

ADB’ üçgeninde, \(|DB'| = 12 \) (pisagor)

\[|CB'| = 20 - 12 = 8 \]

ADB’ ~ B’CK \(\Rightarrow \frac{16}{8} = \frac{20}{|B'K|} \) \(\Rightarrow \) \(|B'K| = 10 \)

Alan (AB’K) = \(\frac{10.20}{2} = 100 \) elde edilir.

35.

ABCD bir paralelkenar

[BK] açıortay

KM \(\perp \) BC

\(|DC| = 12 \text{ cm} \)

\(|KM| = 3 \text{ cm} \)

Yukarıdaki verilere göre, AKB üçgeninin alanı kaç cm\(^2\) dir?

A) 12 B) 18 C) 20 D) 24 E) 36

Çözüm 35

Açıortay üzerinde alınan bir naktanın kollara uzaklıkları eşit olacağınından,

\[|KH| = |KM| = 3 \text{ cm olur.} \]

Alan (AKB) = \(\frac{12.3}{2} = 18 \)
Not:

Şekildeki ABCDEF bir düzgün altıgendir.

A(EAB) = 32\sqrt{3} cm olduğuna göre, altıgenin bir kenarının uzunluğu kaç cm dir?

A) 2\sqrt{3} B) 4\sqrt{3} C) 8\sqrt{3} D) 4 E) 8

Çözüm 36

ABCDEF düzgün altıgen,

\[|AB| = |BC| = |CD| = |DE| = |EF| = |FA| = a \text{ olsun.} \]

Düzgün altıgenin bir dış açısı \[\frac{360}{6} = 60 \]

Düzgün altıgenin bir iç açısı \[180 - 60 = 120 \]

\[s(A) = s(B) = s(C) = s(D) = s(E) = s(F) = 120 \]

EFA ikizkenar üçgeninde \[|EA| = a\sqrt{3} \] bulunur.

Alan (EAB) = \[32\sqrt{3} = \frac{a.a\sqrt{3}}{2} \] \[\Rightarrow \ a = 8 \text{ olur.} \]
37.

Şekildeki verilere göre, α kaç derecedir?

A) 45 B) 36 C) 34 D) 32 E) 30

Çözüm 37

Çemberde dış açıdan, $\alpha = \frac{m(\text{AKB}) - m(\text{ADB})}{2}$

Çevre açıdan, $s(\text{ADB}) = 3\alpha \quad \Rightarrow \quad m(\text{AKB}) = 6\alpha$

$\alpha = \frac{6\alpha - m(\text{ADB})}{2} \quad \Rightarrow \quad m(\text{ADB}) = 4\alpha$

$m(\text{ADB}) + m(\text{AKB}) = 360$

$4\alpha + 6\alpha = 360 \quad \Rightarrow \quad \alpha = 36$

Not: Çemberde Açılar – Dış Açı

Köşesi çemberin dış bölgesinde ve teğet olan ağıyla dış ağı denir. Dış ağıın ölçüsü gördüğü yaylar farkının yarısına eşittir.
Not : Çevre açı (Çember açı)
Köşesi çember üzerinde olan açıya çevre açı denir.
Çevre açısının ölçüsü gördüğü yayın ölçüsünün yarısına eşittir.
\[x = \frac{m(AB)}{2} \]

38.

Şekildeki M ve N merkezli çemberler T noktasında birbirlerine teğettir.
M merkezli çemberin yarıçap uzunluğu r olduğunu göre, ABC üçgeninin alanı kaç \(r^2 \) dir?

A) 2,5 B) 3 C) 3,5 D) 4 E) 4,5

Çözüm 38

KL \perp AT \Rightarrow |MK| = |ML| \Rightarrow |MC| = |CK| = |MB| = |BL| = r

Çemberde kuvveten,
|TM|.|MA| = |KM|.|ML| \Rightarrow r.|MA| = 2r.2r \Rightarrow |MA| = 4r

Alan (ABC) = \(\frac{|BC||MA|}{2} = \frac{2r.4r}{2} = 4r^2 \)

Not : Çemberde kuvvet bağıntıları

P noktası çemberin içinde ve biri çemberi A ve B noktalarında, diğer C ve D noktalarında kesen, iki kesen çizilirse,
\[|PA|.|PB| = |PC|.|PD| \] olur.
Şekildeki M merkezli çember, O merkezli ve 1 cm yarıçaplı çeyrek çembere T noktasında, Ox ve Oy eksenlerine de sırasıyla A ve B noktalarında teğettir.
Buna göre, M merkezli çemberin yarıçapı kaç cm dir?

A) $\sqrt{2}$ B) $\sqrt{2} + 1$ C) $\sqrt{2} + 2$ D) 2 E) 4

Çözüm 39

O ile M noktalarını birleştirelim.
M merkezli çemberin yarıçapı r olsun.
$|MB| = |MA| = r \Rightarrow |OA| = |OB| = r$ olur.
$|OM| = r + 1$

OAM üçgeninde pisagor teoremi uygulanırsa,

$|OM|^2 = |OA|^2 + |MA|^2$

$(1 + r)^2 = r^2 + r^2 \Rightarrow r = \sqrt{2} + 1$ bulunur.

Veya

$|OM|^2 = r^2 + r^2 = 2r^2 \Rightarrow |OM| = \sqrt{2} r$

$\sqrt{2} r = 1 + r \Rightarrow r = \frac{1}{\sqrt{2} - 1} = \sqrt{2} + 1$
40.

[Diagram]

ABCDEFGH küp
AKLMTSRN küp

\[|AB| = a \text{ cm} \]
\[|AK| = \frac{a}{3} \text{ cm} \]

Bir kenarı a cm olan içi dolu tahta bir küpün köşesinden, bir kenarı \(\frac{a}{3}\) cm olan bir küp kesilerek çıkartılıyor.

Geriye kalan büyük küp parçasının alanının, küçük küpün alanına oranı kaçtır?

A) 9 B) 12 C) 18 D) 27 E) 36

Çözüm 40

Cisimden çıkartılan küp, büyük küpün alanı değiştirmez.

\[\text{Alan büyük küp} = 6a^2 \]
\[\text{Alan küçük küp} = \frac{6(\frac{a}{3})^2}{6} = 9 \]

41.

[Diagram]

T dik koninin tepesi

\[|AB| \text{ koni tabanının bir çapı} \]
\[|AO| = |OB| = 1 \text{ km} \]
\[|TB| = 3 \text{ km} \]

Yukarıdaki Şekil, dik koni biçiminde idealleştirilmiş bir dağı; A ve B noktaları ise bu dağı eteğindeki iki köyü temsil etmektedir.

Bu iki köyü birleştiriren, dağı yüzeyi üzerindeki en kısa yol kaç km dir?

A) \(\frac{\pi}{3}\) B) \(\frac{2\pi}{3}\) C) \(\pi\) D) \(\sqrt{3}\) E) 3
Çözüm 41

Koninin taban çevresi = $2\pi r = 2\pi \cdot 1 = 2\pi$ (merkezi O noktası, $r = 1$)

⇒ (AB) yarı çevresi = π bulunur.

Yay uzunluğu = $AB = 2\pi r \cdot \frac{\alpha}{360} = \pi \Rightarrow \alpha = 60$ olur. (merkezi T noktası, $r = 3$)

\[\alpha = 60 \text{ ve } |TA| = |TB| = 3 \]
⇒ TAB üçgeni, eşkenar üçgen olur.

O halde, $|TA| = |TB| = |AB| = 3$

42. \[x + 4y = 4 \]
\[mx + y = \frac{9}{5} \]
doğruları $y = x$ doğrusu üzerinde kesişip göre, m kaçtır?

A) $\frac{1}{4}$ B) $\frac{3}{4}$ C) $\frac{5}{4}$ D) $-\frac{1}{4}$ E) $-\frac{1}{2}$

Çözüm 42

$y = x$ doğrusu üzerindeki nokta (a, b) olsun.

$(a, b) = (a, a)$ olur.

Doğru üzerindeki noktalar doğru denklemini sağlayan için,

\[x + 4y = 4 \Rightarrow a + 4a = 4 \Rightarrow 5a = 4 \Rightarrow a = \frac{4}{5} = b \Rightarrow \left(\frac{4}{5}, \frac{4}{5} \right) \]

$(\frac{4}{5}, \frac{4}{5})$ noktası, $mx + y = \frac{9}{5}$ denklemini de sağlayacağından, $\frac{4}{5} \cdot \frac{4}{5} = \frac{9}{5} \Rightarrow m = \frac{5}{4}$
43. A(1, -1) noktasının Oy eksenine göre simetriği B, aynı A noktasının y = x doğrusuna göre simetriği C olduğunu göre, |CB| uzunluğu kaç birimdir?

A) 4√2 B) 3√2 C) 2√2 D) 2 E) 1

Çözüm 43

A(1, -1) noktasının y eksenine göre simetriği B(−1, −1)
A(1, -1) noktasının y = x doğrusuna göre simetriği C(−1, 1)
İki nokta arası uzaklık: $|CB| = \sqrt{((-1) - (-1))^2 + (1 - (-1))^2} = \sqrt{0 + 4} = \sqrt{4} = 2$

Not: Oy eksenine ve y = x doğrusuna göre simetri

![Diagram](image)

A(x, y) noktasının y eksenine göre simetriği B(−x, y)
A(x, y) noktasının y = x doğrusuna göre simetriği C(y, x)

Not: İki nokta arasındaki uzaklık

$A(x_1, y_1) \text{ ve } B(x_2, y_2) \Rightarrow |AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
Şekildeki AD ve BC doğrularının kesim noktası P olduğuna göre, AOCP dörtgeninin alanı kaç birim karedir?

A) \(\frac{1}{3} \) B) \(\frac{2}{3} \) C) \(\frac{3}{4} \) D) \(\frac{4}{5} \) E) \(\frac{5}{6} \)
Çözüm 44

I. Yol

B ile D noktalarını birleştirilirse, |BC| ve |AD|, OBD üçgeninin kenarortayı olur.

|OA| = |AB| ve |OC| = |CD|

Bu durumda P ağırlık merkezidir.

Alan (PCD) = A olsun. Alan (PBD) = 2A olur. \(\Rightarrow (|BP| = 2|PC|) \)

Alan (PBD) = 2A \(\Rightarrow \) Alan (PAB) = A olur. \(\Rightarrow (|DP| = 2|AP|) \)

Alan (BDC) = 3A \(\Rightarrow \) Alan (BOC) = 3A \(\Rightarrow (|OC| = |CD|) \)

Alan (OBD) = 2A + A + A + 2A = 6A \(\Rightarrow \) Alan (AOCP) = 6A – (A + 2A + A) = 2A

Alan (OBD) = \(\frac{|OD||OB|}{2} \) = \(\frac{2.2}{2} = 2 \) \(\Rightarrow \) 6A = 2 \(\Rightarrow \) A = \(\frac{2}{6} = \frac{1}{3} \)

Alan (AOCP) = 2A = 2.\(\frac{1}{3} = \frac{2}{3} \)
II. Yol

A(0,1) ve D(2,0) ⇒ [AD] denklemi, \[
\frac{x-0}{2-0} = \frac{y-1}{0-1} \Rightarrow 2y-2 = -x \Rightarrow y = \frac{2-x}{2}
\]

B(0,2) ve C(1,0) ⇒ [BC] denklemi, \[
\frac{x-0}{1-0} = \frac{y-2}{0-2} \Rightarrow y-2 = -2x \Rightarrow y = 2-2x
\]

İki doğrunun kesim noktası P ise, \[
\frac{2-x}{2} = 2-2x \Rightarrow 3x = 2 \Rightarrow x = \frac{2}{3}
\]

[AD] veya [BC] doğru denkleminde, \(x = \frac{2}{3}\) yazılrsa, \(y = \frac{2}{3}\) bulunur.

P(\(\frac{2}{3}\), \(\frac{2}{3}\)) olur.

P(\(\frac{2}{3}\), \(\frac{2}{3}\)) noktasından Ox ve Oy eksenlerine birer dikme çizelim.

\[
\text{Oluşan HPOC yamuğun alanı} = \frac{1+\frac{2}{3}}{2} = \frac{5}{3} = \frac{5}{9}
\]

\[
\text{Yamuğun üstünde kalan AHP üçgenin alanı} = \frac{\frac{2}{3}(1-\frac{2}{3})}{2} = \frac{2}{18} = \frac{1}{9}
\]

\[
\text{Toplam alan} = \text{Alan (AOCP)} = \frac{5}{9} + \frac{1}{9} = \frac{6}{9} = \frac{2}{3}
\]
Not: Yükseklikleri eşit olan üçgenlerin alanları oranı, tabanları orana eşittir.

Not: İki noktası bilinen doğru denklemi

\[A(x_1, y_1) \text{ ve } B(x_2, y_2) \Rightarrow \frac{y - y_1}{y_1 - y_2} = \frac{x - x_1}{x_1 - x_2} \]

45.

Yukarıdaki grafikte belirtilen \(A_1, A_2, A_3, A_4, A_5 \) noktalarından hangisi,
\[x \leq y \leq -x \]
\[y \leq 0 \]
koşullarının tümünü birlikte sağlar?

A) \(A_1 \) B) \(A_2 \) C) \(A_3 \) D) \(A_4 \) E) \(A_5 \)
Çözüm 45

\[y \leq 0 \ , \ x \leq y \ , \ y \leq -x \] koşullarını sağlayan, taraflan bölgenin A_4 alanıdır.

Adnan ÇAPRAZ

adnancapraz@yahoo.com

AMASYA